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STABLE TEARING BEHAVIOR OF A THIN-SHEET MATERIAL WITH MULTIPLE
CRACKS

D. S. Dawicke, J. C. Newman, Jr., M. A. Sutton, and B. E. Amstutz

ABSTRACT

Fracture tests were conducted on 2.3mm thick, 305mm wide sheets of 2024--T3

aluminum alloy with from one to five collinear cracks. The cracks were introduced

(crack history) into the specimens by three methods: saw cutting, fatigue precracking at a

low stress range, and fatigue precracking at a high stress range. For the single crack tests,

the initial crack history influenced the stress required for the onset of stable crack growth

and the fh'st 10mm of crack growth. The effect on failure stress was about 4% or less.

For the multiple crack tests, the initial crack history was shown to cause differences of

more than 20% in the link-up stress and 13% in failure stress. An elastic-plastic finite

element analysis employing the CTOA fracture criterion was used to predict the fracture

behavior of the single and multiple crack tests. The numerical predictions were within

7% of the observed link-up and failure stress in all the tests.

INTRODUCTION

Commercial jet transport aircraft are designed with economic fatigue design life

goals. As the fleet ages and approaches its design life, the possibility for the development

of fatigue cracking increases. Analysis tools are needed to assess the influence of fatigue

cracks on structural integrity and to define inspection intervals. One of the objectives of

the NASA Aircraft Structural Integrity Program [1] is to develop the methodology

necessary to predict residual strength of cracked pressurized aircraft fuselage structures.

The approach taken is to develop a local fracture criterion that can be used with shell-

code finite element analyses. The fracture criterion should be able to predict large

amounts of stable crack growth for multiple cracks under conditions of large-scale

yielding in thin sheet materials.

The crack tip opening angle (CTOA) [2-6] fracture criterion has been

experimentally verified to successfully predict residual strength in laboratory specimens

[7-9]. Newman et al [10] have also applied the CTOA criteria to multiple-site damage

(MSD) cracking scenarios, accurately predicting crack link-up and residual strength for

508mm wide sheets of clad 2024-T3 aluminum with 1 to 5 collinear cracks. That study

indicated that, as postulated by Swift [11] and demonstrated experimentally by Maclin

[12], the residual strength of a structure with a single long crack is significantly reduced



by the presence of smaller adjacent cracks. Furthermore, Newman et al [10] indicated

that methods used to introduce cracks (fatigue precracking or saw cuts) can significandy

influence the residual strength of multiple interacting cracks. The stress required for the

onset of stable tearing was greater for saw cuts than for fatigue cracks. Increasing the

fatigue precracking stress was also observed to increase the stress required for the onset

of stable tearing [8]. These increases may have significant consequences on the link-up

and failure of MSD cracking scenarios.

The objective of this study was to experimentally investigate the affect of crack

history (including saw cuts) on the residual strength of multiple interacting cracks.

Fracture tests were conducted on fiat sh_ts test specimens containing from one to five

cracks. The cracks were introduced into the specimens by three methods: saw cutting,

fatigue precracking at a low stress range, and fatigue precracking at a high stress range.

CTOA and strain field measurements were made on many of the tests. Predictions of the

fracture behavior were made using an elastic-plastic finite element analysis and the

critical CTOA fracture criterion.

EXPERIMENTAL PROCEDURE

Fracture tests were conducted on 2.3mm thick 2024-T3 aluminum alloy. The

yield stress and ultimate strength of the material were 345 and 490 MPa, respectively.

The specimens were 305mm wide and had from one to five nearly collinear cracks. Four

additional tests were conducted on 76mm wide middle crack tension (M(T)) specimens.

The cracks were introduced into the specimen by either fatigue precracking or by saw

cuts. Measurements of CTOA were made using the digital image correlation (DIC) and

optical microscope (OM) techniques. The strain field measurements were made using the

DIC method.

Fracture Tests

All of the specimens were cracked in the L-T orientation (i.e., the load was

applied in the longitudinal or rolling direction and the crack was in the transverse

direction or perpendicular to the longitudinal direction). The cracks were introduced by

fatigue precracking at a high stress range (HS), fatigue precracking at a low stress range

(LS), or saw cutting (SC). The saw cuts were made with a jeweler's saw blade that made
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a square-corner notch with roughly a 0.4mm slot height. The fatigue cracks were

obtained by cycling notched specimens at a stress ratio of R=0.02 and at a stress range

that would result in a stress intensity factor range of about 7 MPa _ for the LS tests and

about 35 MPa _i for the HS tests. The multiple (3 and 5) crack specimens were fatigue

precracked by fn'st saw cutting notches at the intended locations of the smaller (MSD)

cracks. The notch lengths were roughly 5mm less than the intended crack lengths. A

stress range was calculated that resulted in the proper stress intensity factor range for the

smaller cracks and the specimen fatigue precracked until the cracks reached the required

length. Then, the longer crack was added by a saw cut, a new stress range calculated, and

the specimen was again fatigue precracked until the long crack reached the required

length. During the long crack fatigue precracking, the stress intensity factor of the

smaller cracks was low enough that no noticeable crack growth was observed. Typical

initial crack configurations are shown in Figure 1.

The specimens were fractured under displacement control. The rate of

displacement was 3mm/sec. Anti-buckling guides were used in all but four tests. The

anti-buckling guides consisted of two 12mm thick plates of 2024-T3 aluminum that

sandwiched the specimen and were held in place by a series of bolts along the vertical

edges. A layer of Teflon tape was put on the plates to reduce the friction between the

plates and the specimen. The guides had a 10mm high and 250mm long slot in the center

of the plate to view the cracks. During each test, measurements of some or all of the

following parameters were made: load, crack length, surface CTOA, and surface strain

fields.

Measurement Techniques

The critical CTOA during stable tearing was measured by direct observation of

the surface using both the DIC and the OM techniques. The OM technique uses a video

camera and a long focal length microscope to image the tearing crack. The CTOA is

calculated directly from the angle made by points located on the upper surface, the crack

tip and the lower surface [8, 9]. Similarly, the DIC technique uses a computer controlled

video camera and lens system to digitize images of the specimen surface. To make

measurements with the DIC technique, the specimen surface was coated with a high

contrast random speckle pattern. A small region, or subset, is identified in a reference

image and the relative displacement of that same subset in a subsequent image is

calculated [8, 9, 13-17]. The CTOA measurement is based on displacements of subsets
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located near the upper and lower crack surfaces and the crack tip [S, 9]. For both the DIC

and OM techniques, the CTOA measurements were made within 0.5-1.5mm behind the

crack tip.

The surface strain fields were calculated using the DIC technique. A

displacement field grid was obtained by systematically measuring the displacements of

overlapping subsets ahead of the crack tip. The displacement data was smoothed using a

two-dimensional, optimal smoothing method [18]. The smoothing program computed the

estimated surface strains [_yy, [_xx, and exy at each displacement grid location. The strain

field measurements were made in front of cracks or saw cuts in the 76mm wide

specimens and in the ligaments between 2 cracks or 2 saw cuts in the 305mm wide

specimens.

FINITE ELEMENT ANALYSIS

The elastic-plastic finite element code ZII:r2D [19] was used to predict the stable

tearing behavior in the fracture tests. The program uses 3-noded, constant strain

triangular elements and a critical CTOA criterion to extend the crack. The elastic-plastic

analysis employs the initial-stress concept [20] based on incremental flow theory and

small strain assumptions. A multi-linear representation of the uniaxial stress-strain curve

for 2024-T3, with the data given in Table 1, was used in the analysis with a yon Mises

yield criterion.

Finite Element Code and Meshes

The element size along the line of crack extension was d--0.48mm. Symmetry

conditions required that only half of the specimen be modeled, with the axis of symmetry

along the crack line. Normally, the nodes along the crack line and ahead of the crack tip

are fixed, while those behind are free. This analysis uses springs along the crack line to

change boundary conditions associated with crack extension. The spring stiffness is set

equal to zero for nodes behind the crack tip and assigned an extremely large value for

nodes ahead of the crack tip. Monotonic loading (under displacement control) was

applied to the model. Crack growth by stable tearing was governed by the critical CrOA

criterion. Reference 7 contains the details of the elastic-plastic finite element analysis

used in this work.
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Critical CTOA Criterion

The critical CTOA (Vc) criterion is equivalent to a critical CTOD (Be) value at a

specified distance, d, behind the crack tip equal to one element length and is given by:

The crack-tip node was released and the crack advanced to the next node whenever the

CTOA equaled or exceeded a preset critical value (Vc) during incremental loading. This

process was repeated until crack growth became unstable under load control or the crack

reached a desired length under displacement control. The critical CTOA value (Ve) was

determined experimentally from surface measurements made using both the OM and DIC

techniques.

Crack History Simulation

The different crack histories (LS, HS, and SC) were simulated within the finite

element analysis. The crack history associated with the low and high fatigue precracking

was simulated by cyclic loading of the finite element model. The model was loaded to

the appropriate stress level and the crack allowed to advance one element length, then the

load returned to zero. The procedure was repeated for another cycle to allow residual

stresses to develop ahead of the crack and plasticity deformed material left in the crack

wake.

The saw cut was simulated by using the assumption that the saw cut must undergo

a deformation, _5i, at the tip before a crack would initiate. The saw cut tip node would be

released once the tip displacement reached 8i. The value _i was obtained by matching the

crack growth in the single saw cut fracture tests. Additional information on determining

_i for the saw cut simulation is given in Reference 10.

RESULTS AND DISCUSSION

Twenty nine fracture tests were conducted on the 305mm wide, 2.3mm thick

sheets of 2024-T3 aluminum alloy. The tests are summarized in Table 2 and the initial

crack configurations are given in Table 3. The critical CTOA was obtained from
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experimental measurements made on a stablytearingcrack. Four fracturetestswere

conducted on 76ram wide, 2.3ram middle crack tensionspecimens (M(T)) made of the

same material.The M(T) testsare summarized inTable 4.

Single Crack Fracture Tests

Four different types of single crack fracture tests were conducted: low stress

range fatigue precracking with anti-buckling guide plates (LS), low stress range fatigue

precracking without anti-buckling guide plates (LS-NG), high stress range fatigue

precracking (I-IS), and saw cuts (SC). In each test, the crack extension (Aa) was recorded

as a function of applied stress. The failure stress was recorded for each test and is shown

in Figure 2 as a function of the initial crack length. The LS and HS test had about the

same failure stresses. The failure stresses of the SC and LS-NG tests were about 4%

higher and about 13% lower, respectively than the failure stresses in the LS tests.

In each test, the amount of stable crack growth was measured as a function of

applied stress, as shown in Figure 3 for the tests with the 127ram initial cracks. The LS-

NG and LS tests were identical except for the use of anti-buckling guides in the LS test.

The lack of anti-buckling guides decreased both the stress required for the initial crack

growth and the failure stress. Compared to the LS test, the LS-NG test had a 6% lower

stress at the onset of stable crack growth (indicated by the solid symbols) and a 16%

lower failure stress. In the LS-NG tests, out-of-plane displacements were measured at the

center of the crack (6mm above the crack plane), as shown in Figure 4. The out-of-plane

displacements initially increased linearly with applied stress, but above a stress of 80MPa

the displacements increased dramatically, indicating the start of local crack buckling.

The HS and LS tests differed only in the stress range used for the initial fatigue

precracking. The high stress range fatigue precracking increased the plastic deformation

ahead of the crack and in the crack wake, increasing the stress required to initiate stable

crack growth by 16% compared to the LS test. After about 10mm of stable crack growth,

the influence of the initial crack history was lost and the behavior of the LS and HS tests

were identical, as shown in Figure 3.

The stress required to initiate stable crack growth from a saw cut was about 47%

higher than that of the LS test, but the failure stress was only increased by about 4%. The

SC test required about 20mm of crack growth before the effect of the saw cut had
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diminished and the crack growth behavior approached that of the LS and HS tests, as

shown in Figure 3.

Multiple Crack Fracture Tests

Three different techniques (LS, HS, and SC) were used to introduce cracks for the

multiple crack fracture tests. Three patterns of multiple cracks were examined (Figure 1):

two long cracks with a small ligament between them, a long centered crack with a single

small crack in front of both crack tips (both small and large ligaments were considered),

and a long centered crack with two small collinear cracks in front of both crack tips.

In the tests with three collinear cracks (with small ligaments between cracks), the

link-up behavior of all three tests (LS, HS, and SC) was different, as shown in Figure 5.

For the LS test, link-up occurred at 136 MPa and the highest stress occurred at a second

loading peak, well after link-up. Link-up in the HS test occurred at a stress 7% higher

than the stress in the LS test, but after link-up the two tests were nearly identical. The

behavior of the SC test was noticeably different. Link-up occurred at 166 MPa, 22%

greater than in the LS test, and this was the maximum stress in the test. A second peak

stress was observed, but this was less than the link-up stress. The crack growth behavior

of the SC test agreed with the LS and HS tests after about 25mm of crack extension. The

actual difference in maximum stresses after link-up for the three tests was only about 5%,

but the stable crack growth behavior of the three tests was considerably different.

Only LS and SC tests were conducted for the configuration of three collinear

cracks with large ligaments between cracks, as shown in Figure 6. The onset of crack

growth began at a stress of 187 MPa in the LS test and at a stress of 247 MPa in the SC

test. Link-up was the critical event (maximum stress) in both tests, with the stress at

failure in the SC test about 4% higher than the stress at failure in the LS test.

In the tests with five collinear cracks, the LS and HS link-up behavior was nearly

identical, as shown in Figure 7. In the SC tests, the onset of crack growth occurred at

stress level greater that the stress required for failure in the LS and HS tests. Link-up was

the critical event in all three tests, with the link-up in the SC tests at a stress 13% higher

than the stress in the LS and HS tests.
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Strain Fields

The DIC method was used to measure the strain field in the ligament between two

collinear cracks and between two collinear saw cuts. The fatigue cracks and saw cuts

were about 50mm long and both large (15mm) and small (5ram) ligaments were

examined. The cracks were fatigue preeracked at a low stress level (LS) and the saw cuts

(SC) were produced in the same manner as discussed earlier. For the small ligament

tests, link-up occurred at 91 MPa and 126 MPa for the fatigue cracks and saw cuts,

respectively. The failure stress was 209 MPa and 223 MPa for the fatigue cracks and saw

cuts, respectively. For the large ligament tests, link-up occurred at 149 MPa and 181

MPa for the fatigue cracks and saw cuts, respectively. The failure stress was 195 MPa

and 205 MPa for the fatigue cracks and saw cuts, respectively. Four _ strain fields were

generated for the tests with small ligaments: at 74%, 84%, 92%, and 94% of the link-up

stress for the LS test and 53%, 86%, 91% and 99% of the link-up stress for the SC test, as

shown in Figures 8-11, respectively.

The LS strain field at 74% of the link-up stress (Figure 8a) and the SC strain field

at 53% of the link-up stress (Figure 8b) were at the same stress level (S=67 MPa). The

strain in the direction of loading (eyy) throughout the LS ligament are clearly greater than

those of the SC ligament and the strains in the LS ligament are above a yield strain of

0.007. After increasing the applied stress to 84% and 86% of the link-up stresses for the

LS (Figure 9a) and SC (Figure 9b) tests, respectively, the eyy strain in the ligament

between the two cracks exceeds 0.02. The strain contour lines depict the twin lobes of

elevated strain near the crack tip and saw cut. The lobes for the saw cut are more spread

out, while those in front of the crack tip are more concentrated and have higher strains.

In the center of the ligament, the strains for both the LS and SC case are about the same.

The LS strain fields at 92% and 94% of the link-up stress (Figures 10a and 1 la) and the

SC strain fields at 91% and 99% of the link-up stress (Figures 10b and 1 lb) continue to

exhibit this trend. However, by 92% of the link-up stress, the crack has begun to grow.

Crack growth from the saw cut does not begin until the link-up stress.

LS and SC fracture tests were conducted on the 76mm wide M(T) specimens.

Crack growth began at a lower load in the LS tests than in the SC tests and the failure

stress of the SC tests (248 MPa) were about 5% higher than the LS tests (237 MPa). The

DIC method was used to measure the eyy strains ahead of the cracks and saw cuts. The

strains were measured along a line, perpendicular to the direction of loading, starting
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at the region of maximum strain for both the crack tip and saw cut. Figure 12 contains

the LS and SC eyy strains against the distance from the crack or saw cut for applied stress

level of 230 MPa. As indicated by the strain field plots, for the same applies stress level

the r_ strains ahead of the crack tip are consistently greater than those from the saw cut.

This effect is highly localized because the _ strains at distances greater than lmm ahead

of the crack or saw cut are nearly identical.

CTOA Measurements

The measured critical CTOA values as a function of crack extension for the tests

with low stress range (LS) fatigue precracking are shown in Figure 13. Also shown in

Figure 13 is the scatter band for the 76ram wide middle crack tension, M(T), tests

conducted under LS conditions on the same material [8,9]. The measured CTOA values

fall within the scatter band and have an average value of about 6 ° in the steady-state

region beyond one thickness (2.3ram) of crack extension.

The measured critical CTOA values for the tests with high stress range (HS)

fatigue precracking and with saw cuts (SC) are shown in Figure 14. Also shown in

Figure 14 is the scatter band from the 76mm wide middle crack tension, M(T), tests

conducted under HS conditions on the same material [8,9]. Again, the measured CTOA

values fall within the scatter band and have an average value of about 6 ° in the steady-

state region beyond about 2mm of crack extension.

Finite Element Predictions

The fracture experiments were predicted using the elastic-plastic finite element

code ZIP2D, the stress-strain relationship given in Table 1, and the experimentally

measured CTOA value of 6 °. The critical displacement, 5i, used to delay crack growth

from the saw cuts, was determined by choosing a value that would best match the

behavior of the three SC tests. The finite element analysis was terminated after all link-

ups had occurred and the stress dropped for 20 increments of crack extension.

All of the predictions of stress at link-up and failure stress were within 5% of the

values obtained from the experiments. The stress against crack extension results from the

single crack LS tests and predictions are shown in Figure 15. Initially, the finite-element

analysis overpredicted the amount of crack growth for a given applied stress. However,
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severe tunneling has been observed in previous tests during this initial phase of stable

tearing [8,9], resulting in more crack extension in the interior than measured on the

surface. After about 4ram of stable crack growth, the predictions closely matched the

experimental measurements for all three initial crack lengths.

The stress against crack extension results from the single crack HS tests and

predictions are shown in Figure 16. Once again, the analysis overpredicted the initial

amount of crack growth, but after about 4ram of stable crack growth, the predictions

closely matched the experimental measurements for all three initial crack lengths. The

simulated high fatigue stress range precracking caused the stress level required to initiate

crack growth to be about 15% higher than required in the LS simulation. However, the

failure stresses were not affected by the HS fatigue precracking.

The stress against crack extension results from the single crack SC tests and

simulations are shown in Figure 17. These simulations were obtained by choosing a 8i,

value that would result in the best match to the stress against crack extension behavior.

The chosen value was 8i = 0.076mm and this value was used in all subsequent SC

predictions. The simulated saw cut behavior caused the stress level required to grow the

crack to be about 50% higher than required in the LS simulation.

Predictions were made for the multiple crack fracture tests, the 3- and 5-crack

configurations had a single long central crack and smaller collinear cracks, the 2-crack

configurations had two roughly equal cracks with a ligament at the center of the

specimen. The stress against crack extension results and predictions for the 3-crack (with

small ligaments between cracks) fracture tests are shown in Figure 18. The predictions

for all three crack histories (LS, HS, and SC) were in good agreement with the

experimental measurements. Once again, the predicted initial crack growth was greater

than observed experimentally, but the link-up and maximum stresses were within 2% of

the experimental measurements. The stress against crack extension results and the

predictions for the 3-crack (with large ligaments between cracks) fracture tests are shown

in Figure 19. The predictions were in good agreement with the experimental results with

the predicted link-up stresses (link-up occurred at maximum stress) were within 3% of

the experimental measurements.

The stress against crack extension results and predictions for the 5-crack fracture

tests are shown in Figure 20. The predictions for the LS and HS tests were in good
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agreement with the experimental measurements, but the SC predictions for stress at link-

up (link-up occurred at the maximum stress) were about 5% greater than measured in the

experiments.

The stress against crack extension predictions and experimentally measured link-

up and failure stresses (crack growth was not monitored in these tests) for the 2-crack

fracture tests are shown in Figures 21 and 22 for the small and large ligament

configurations, respectively. The predictions for the LS and SC tests were in good

agreement with the experiments for both configurations. For the small ligament (5ram)

configuration, the predicted link-up stresses were within 7% and the predicted failure

stresses were within 5% of the experimental measurements. For the large ligament

(15rnm) configuration, the predicted link-up and failure stresses were within 6% of the

experimental measurements.

CONCLUDING REMARKS

A combination of experimental and analytical methods has demonstrated that the

stable crack growth behavior and residual strength of thin sheet structures with multiple

collinear cracks, is influenced by the crack history and that this behavior can be

accurately predicted. In particular, this research has shown that:

(1) The initial crack history (saw cut, high stress level fatigue precracking, low stress
level fatigue precracking) has a strong effect on the initial portion of stable crack

growth.

(a) For a single crack, the influence of initial history (fatigue precracking
stress level and saw cuts) is lost after about 10ram of crack growth. The

effect on residual strength is about 4% or less.

(b) For multiple collinear cracks, the initial history (fatigue precracking
stress level and saw cuts) was shown to cause differences of more than

20% in link-up stress and 13% in failure stress.

(2) Saw cuts resulted in higher (unconservative) link-up and failure stresses than
equivalent fatigue cracks. The behavior of saw cuts and cracks appears to be
directly linked to experimentally observed differences in the local crack tip strain
fields; the crack tip strains are highly concentrated, being much higher than the saw
cut strains within 0.60ram of the tip (this corresponds to the large deformation

region or fracture process zone).

(3) The ZIP2D plane stress finite element model, coupled with the experimentally
measured critical CTOA = 6 °, accurately predict the behavior for single crack and

multiple collinear crack configurations.
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(4) Accurate prediction of saw cut specimens requires both an initiation parameter, Bi,
as well as a critical CTOA.

(5) Unrestrained crack buckling can reduce the residual strength significantly.
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